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Abstract

Recently, an alternative approach to represent the state of a quantum system
has been suggested, which is based on the use of neural networks. In more de-
tails, it consists of a general method which is, in practice, specialized to the case
of a spinglass which state is represented by restricted Boltzmann machines. This
promising method has been subsequently generalized to find the ground state
of any given quantum system provided with its corresponding Hamiltonian and
simple validation tests have been presented. In this paper, a more complex val-
idation testbed is considered consisting of two archetypal chemical systems: the
hydrogen atom and the Hy molecule. Both correspond to numerically difficult
problems due to the well-known singularity in the hydrogen Coulomb potential
at the position of the nucleus. In spite of those difficulties, such generalization
correctly finds the ground state of a three-dimensional hydrogen atom without
the need for any prior (physics) knowledge. Moreover, when applied to the Hy
molecule, this new method is able to correctly tackle this many-body problem as
well. The authors believe that these promising results clearly show the potential
to pave the way towards very different approaches to study quantum chemical
systems.
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1. Introduction

The hydrogen atom is, by far, the simplest possible atom found in nature:
it consists of only one proton and one electron. In spite of its apparent simplic-
ity, though, it has had a role of paramount importance in the development of
Physics, providing practical instances of quantum mechanical effects and, there-
fore, offering a powerful testbed. Moreover, two hydrogen atoms can easily bind
by moving their nuclei at a distance equal to 0.7416 A and by arranging their
electrons to achieve the minimum energy. This forms a dihydrogen molecule,
denoted as Hs, which dissociation energy is equal to 4.476 eV and which, once
again, represents an important testbed for novel methods to be validated. As
very well stated in [1]: ”It can be said without fear of contradiction that the
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two-electron bond is the single most important stereoelectronic feature of chem-
istry”.

Recently, one of the authors of this paper (JMS) has suggested a new ap-
proach to find the ground state of a quantum system, which is based on the
use of neural networks to represent its wave function [2]. While this method ex-
ploits the typical generalization capabilities of neural networks, as it reduces the
complexity of the search for the ground state, it also keeps exactly the same ex-
planatory capacities typical of Physics and Chemistry theories. In other words,
this method is not affected by the problem of interpretability at all. There
also are strong indications showing that it might not be affected by the sign
problem as well, since the integrals involved in the mathematical expression of
the energy can be calculated analitically. Finally, this method is embarassingly
parallelizable, which certainly can help with the simulation of relatively big
systems.

Previously, as a preliminary proof of concept, this new method has been
validated against relatively simple single- and many-body quantum systems for
which exact solutions are known. Within this context, the purpose of this paper
is to continue such validation with a special focus on chemical systems. In
particular, we study the applicability of such novel approach to two archetypal
systems issued from the field of quantum chemistry, i.e. the hydrogen atom
and the diatomic (homogeneous) Hy molecule. In particular, finding the ground
state of the hydrogen atom represents a quite challenging validation test because
of the well known singularity appearing in the Coulomb potential generated by
its nucleus. The same can be said about the Hy molecule which also involves
typical quantum phenomena such as tunnelling and exchange-correlation effects,
which are known to require reliable methods to be properly tackled.

The paper is organized as follows. In the following section, we sketch the
suggested method for the sake of completeness. Then, the method is applied to
the cases of the hydrogen atom and the Hy molecule. Finally, some conclusions
and comments on possible future works are provided.

2. Neural Network Representation of Quantum States

The main problem of this work consists in finding the ground state of any
kind of quantum system provided with an Hamiltonian. For the sake of sim-
plicity, in the specific case of one electron in a three-dimensional space, this
corresponds to obtaining the minimum eigenenergy of the following eigenprob-
lem (along with its corresponding eigenfunction):

Hy (x) = B¢ (%), (1)
where x = (z,y, z) are the spatial coordinates and:
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(with p = —ih% being the usual momentum operator). The solutions of this
equation can be written as a set of couples (E,,, ¥,,), ordered by eigenenergies,
with the ground state completely described by the couple (FEy, ).

In order to reduce the complexity of this typical numerical problem, it is
common practice to explicit a wave function in terms of a series defined over a
orthonormal basis {¢;(x),[ € [1, ceey N] }, usually chosen according to the prob-
lem at hand. In details, this series reads:

N
b(x) = api(x), (3)
=1

for some arbitrary integer N fixed before hand, and where the coefficients
{al}le [1 N] represent the new unknowns of the problem. This amounts to ex-

press the wave function simply by means of constants, i.e. ¢ = w({al}lE [1N} ).

On one hand, this highly simplifies the computational problem but, on the other
hand, it introduces important limitations since we are now in front of a new
problem which requires to choose:

e an orthonormal basis,
e an appropriate integer N which truncates this basis.

This actually introduces an extra layer of complexity for the user since one is
forced to select hyperparameters in an infinite set of possible alternatives.

Now, the (well-known) universal approximation theorem [3], [4], [5] guaran-
tees that a single-hidden-layer feedforward neural network (containing only a
finite number of non-linear units) can approximate any continuous function de-
fined over a real-valued n-dimensional compact set (under mild assumptions on
the activation function). Therefore, one could exploit such specific networks to
represent a wave function, as recently suggested in [6] (specifically applied to the
case of restricted Boltzmann machines to predict the dynamics of a spinglass).
More particularly, this novel approach leads to a new kind of discretization of
the quantum state v which is now a function of the network parameters, known
as weights and biases, and which completely defines it, i.e.

¥ =9(W),

where W = {w; j,b;} is the set of weights and biases defining the network.
Although this theorem does not specify the actual number of parameters re-
quired to accurately approximate a function, the Reader should note that the
selection process is now defined in terms of the number of hidden units and
their activation function, which is relatively easier than the above approach (3).
Moreover, the simplicity of the network structure, allows the representation of
one-, two-, or three- dimensional ground states with relatively small compu-
tational resources. For the above reasons, in this work we limit ourselves to
feedforward neural networks consisting of an input layer, one hidden layer with



non-linear units and one output layer with linear units. The input layer receives
the coordinates x = (x,y, z) and the output layer returns two real values corre-
sponding respectively to the real and the complex part of the function ¢ = ¥ (x)
(see Fig. 1 for a visual representation of the network).

It is relatively easy to show, by algebraically manipulating equ. (1), that
the total energy of a system can be expressed as:

_ Jodxgr () Hy (x)
Jo dxi* (%) (x)

where Q represents the spatial (finite) domain of the system. Since, in this
rather novel situation, the wave-function is represented by a neural network, it
is now a function of both position and weights, i.e. ¥ = ¥ (x, W), and thus the
energy solely depends on the weights as well, i.e. E = E(W). At this point, we
are able to define a target or fitness function which embeds the total energy (4)
and forces both closed boundary and normalization conditions:

fo= fw)

E(W)+ A dx* (x, W)tp(x, W)+ | / dxyp* (x, W)y (x, W) — 1(p)
aQ Q

E

(4)

where A > 0 is a real constant and 0f2 represents the boundary of the domain
Q. This naturally ensures that the wave function is decreased at the boundaries
of the spatial domain, and that its norm tends to unity.

On the remaining question of minimizing the quantity (5), one has to choose
a suitable method to find out a well suited set of parameters W. A classical
machine learning approach would be to differentiate our energy according to the
set of weights W and then to apply a stochastic gradient descent (backpropa-
gation) [7]. However, one can easily notice that this method would be affected,
in this particular situation, by two issues:

e Due to the denominator of (4), the expression is non-fully-differentiable
and could lead to an unbounded derivative. Using gradient descent could
therefore lead to unbounded quantities.

e Since the expression (4) is non-convex, there is no guarantee to find a
global minimum of the function by means of the gradient descent method.

Indeed, finding the accurate W, representing the ground state, requires a more
exploratory and derivative-free method. On the other hand, Monte Carlo sam-
pling techniques [8] have proven their efficiency in the Quantum Monte Carlo
theory [9] and could therefore be an alternative approach. However, the re-
cent Covariance Matrix Adaptation Evolution Strategy (CMA-ES) has shown,
although empirically, its ability to be more efficient in terms of convergence
towards the global optimum [10]. Thus, CMA-ES samplings of sets W; are
performed and evaluated by our network, until a global minimum of the energy
FE)y is eventually reached.



We can now proceed with the validation of this suggested approach to the
case of typical systems coming from the field of quantum chemistry, i.e. the
hydrogen atom and the Hy molecule.

3. Numerical Experiments

In this section, we focus on a further and more realistic validation of our
suggested method in the context of quantum chemistry. More specifically, we
look for the ground state of the hydrogen atom and the Hs molecule. These
systems are well understood in the communities of quantum physics and chem-
istry and can, therefore, be considered as classical testbeds. In both cases, we
consider those systems in a three-dimensional space and restrict ourselves to the
Born-Oppenheimer approximation [11], although the Reader should note that
this does not represent a limitation for the method.

In practice, any system containing the H atom is affected by the typical
difficulties of numerically treating the corresponding Coulomb potential, which
contains a singularity, and reads:

e2

V(r)=— (6)

dmegr

where r is the distance between the electron and the nucleus, ¢y is the vacuum
permittivity and e is the elementary charge. In the case of the Hy molecule,
the system is obviously affected by the same numerical issues but, carries an
extra layer of complexity, coming from the interplay between the electron-ion
attraction and the electron-electron repulsion.

Hydrogen atom. The hydrogen atom represents one of the few quantum
chemical system provided with an analytical solution (in the non-relativistic
case). In spherical coordinates, the exact solution reads:

2 3(”*5*1)! —p/2 72041 m
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where p = (r,9, ) are the spherical coordinates, (n, ¢, m) are the quantum

numbers, af is the reduced Bohr radius, Liéfeal(p) is a generalized Laguerre

polynomial of degree (n — ¢ — 1) and order (24 1) and Y™ (¥, ¢) is a spherical
harmonic function of degree ¢ and order m. The corresponding eigenenergy

reads:
Ey

R ©

where Ey ~ 13.606 eV. The ground state wave function of this atom is readily
obtained from (7) with the quantum numbers (n, ¢, m) = (1,0,0), i.e.

1 =

e 0, 9
— 9)

Yo(r) =



with an energy equal to Fy ~ —13.606 eV.

In this context, our validation test consists in comparing the exact solution
(9) with the one obtained by means of our suggested approach in a (finite)
domain represented by a rectangular box of dimensions (L, L,,L,) = (1,1,1)
nm (the H nucleus is positioned in the center). In Fig. 2, we show the probability
density obtained with the neural network anroach compared to the theoretical
solution, as a cut in the z-direction (y = %* and z = %) A good agreement
is observed. In Fig. 3, we obtain the same accuracy for the cuts in the y-
(left-hand side) and z-directions (right-hand side). Finally, Fig. 4 shows three
different planar cuts (top left: = 0.5 nm, top right: y = 0.5 nm, bottom left:
z = 0.5 nm). In particular, this figure clearly demonstrates that the spherical
symmetry is fully respected and, thus, it is clear that the network is actually
able to reconstruct the wave function from scratch without any prior knowledge.
The corresponding ground state energy is computed using equation (4) and is

equal to —13.4101 eV, which is, again, in good agreement with the theory.

The diatomic Hs molecule. Due to its complexity, the Hy molecule does
not have an exact solution which could be utilized for comparison purposes.
However, numerical approximations can be obtained. For instance, the density
functional theory (DFT), which consists in solving a system of coupled single-
electron equations can provide such approximated solution. In practice, this
reduces to solve the Kohn-Sham system of equations, based on the assump-
tion that the electron-electron interaction can be reliably approximated by an
exchange-correlation potential [12]. Many possible choices are possible for such
term and, in this work, we used the Perdew-Wang functional (PW91) [13]. Thus,
in order to compute an approximated solution, we utilized the basis set TZ2P
(triple zeta with 2 polarization functions) to represent the wave function and
solved the two (coupled) equations by means of a deterministic method. Then,
we solved the same set of equations by representing the ground state of the two
electrons by means of two separated neural networks with W; and Wy their
respective sets of weights. Finally, CMA sampling of the two sets were per-
formed as usual to minimize the corresponding energies £y and Es from which
one recovers the total energy. The results of such numerical experiments are
reported in Fig. 5 in function of the (varying) distance between the two nuclei.
Once again, one can observe that the two methods provide results which are in
very good agreement.

4. Conclusions and Future Works

In this paper, we presented further validations of a newly suggested method
based on the representation of the ground state of quantum systems by means of
neural networks, and the embarassingly parallelizable and derivative-free CMA-
ES. More specifically, we applied this new approach to archetypal systems com-
ing from the field of quantum chemistry, i.e. the hydrogen atom and the Hy
molecule which are both affected by the singularity in the Coulomb potential
of the H atom. We have shown that this new method is able to tackle such
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Figure 1: Architecture of the feedforward neural network used in this paper, 'tanh’ units are
examples of activation functions that can be used in the hidden layer.

numerically peculiar situations and provides accurate ground states and ener-
gies. However, in spite of these preliminary encouraging results, many aspects
remain to be investigated. For instance, it would be very important to explore
other networks architecture, especially deep ones which might bring further ad-
vantages. Different sampling algorithms could be explored as well. This will be
the subject of our next future efforts.
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Figure 2: Probability density obtained with the neural network, compared to the theoretical
values as a cut in the x-direction (y = % and z = %) The nucleus of the atom H is
centered on the position x = y = z = 0.5nm, a perfect symmetry of the curve around the
nucleus position is obtained. This confirms our theoretical expectations and demonstrates an

ability of the network to understand by itself intrinsic properties of the quantum system.
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Figure 3: As shown in the figure 2, probability density of the hydrogen electron obtained
with the neural network, for the cuts in the y- and z-direction (left- and right-hand side
respectively). We obtain the same curves as in Fig. 2 and this demonstrates an ability of the
network to understand by itself the spherical symmetry of the problem.
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Figure 4: Cut of the three-dimensional ground state for the atom H computed by means of a
feedforward neural network. The cuts are performed on the planes x = 0.5 nm (top left), y
= 0.5 nm (top right) and z = 0.5 nm (bottom left) respectively. The spherical symmetry is

very well respected.
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Figure 5: Hg potential energy found with the DFT method and with our neural network
method. The energy of the two-body system evolves with the distance between the two
atoms. The two methods provide the same minimum, which corresponds to the stable state
of the system.
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